Skip to main content

Polyether Polyol Vs Polyester Polyol

 Polyester polyol, which are organic substances, are usually formed by condensation (or transesterification) of an organic dicarboxylic acid (anhydride or ester) with a polyol (including a diol) or by polymerization of a lactone with a polyol. The dibasic acid is phthalic acid or phthalic anhydride or an ester thereof, adipic acid, halogenated phthalic acid or the like. The polyhydric alcohol is ethylene glycol, propylene glycol, diethylene glycol, trimethylolpropane, pentaerythritol or the like. Different types of polyester polyols have different properties due to different types or different preparation processes. Several indicators that are important for polyester polyols are hydroxyl number, acid value, moisture, viscosity, molecular weight, density, and color. Characteristics and uses of polyester polyols: Polyester-based polyurethane contains a large number of polar groups such as ester groups and amino groups in the molecule, and has strong cohesive strength and adhesion, and has high strength and wear resistance.

 

Polyether polyol (referred to as polyether) is composed of an initiator (active hydrogen group-containing compound) and ethylene oxide (EO), propylene oxide (PO), butylene oxide (BO), etc. in the presence of a catalyst. It is obtained by polyaddition reaction. The largest yield of polyether is glycerol (glycerol) as the initiator and epoxide (usually PO and EO). Various general-purpose polyether polyol products are produced by changing the feeding mode of PO and EO (mixing plus or separately adding), the ratio of addition, the order of addition, and the like.

 

 

China's licorice resources are abundant, with licorice containing 7% to 10% of licorice and about 5.5% to 9.0% of licorice. Licorice extract can be obtained by solvent leaching to obtain licorice extract, and further processing can produce glycyrrhizic acid.

 

Monoammonium glycyrrhizinate is a white crystalline powder with a special sweet taste. It has antibacterial, anti-inflammatory, anti-viral, anti-microbial, liver and liver protection, throat cleansing, anti-oxidation, inhibition of melanin, high sweetness, low heat energy and health care. It has a wide range of applications in the fields of medicine, cosmetics, and food.

 

Comments

Popular posts from this blog

The Difference Between Nitrile Rubber and NBR LatexThe Difference Between Nitrile Rubber and NBR Latex

  Affected by public health incidents, NBR latex   is like a dark horse that has attracted the attention of the international market. Nitrile rubber and NBR latex are very different in use.   1. The difference in performance between nitrile rubber and NBR latex Nitrile rubber is produced by emulsion polymerization of butadiene and acrylonitrile. Nitrile rubber is mainly produced by low-temperature emulsion polymerization. It has excellent oil resistance, high abrasion resistance, good heat resistance, and strong adhesion. . Its disadvantages are poor low temperature resistance, poor ozone resistance, poor insulation performance, and slightly lower elasticity. Nitrile rubber is mainly used to make oil-resistant rubber products.   Carboxylic nitrile latex is obtained by introducing methacrylic acid or methacrylate ternary copolymer during polymerization. Since the carboxyl nitrile nitrile latex introduces a more polar carboxyl group into the molecular backbone, it furt...

Hexyl Bromide

  Features of n hexyl bromide Product Name: 1-bromhexan Chemical Formula: C6H13Br CAS No.: 111-25-1 Dangerous Grade: 3   Package and Storage: 200kg/drum Store in a cool, dry place. Store in a tightly closed container. Application /Application Industries: Organic synthesis Flavors and fragrances Used as solvents   For more information about glycolic acid , please feel free to contact us!

Difference Between Sodium Laureth Sulfate And Sodium Lauryl Sulfate

Sodium laureth ether sulfate  (SLS) and sodium lauryl ether sulfate (SLES) are surfactants that play a role in foaming products. It is widely believed that the foam produced by a product is its performance. The composition of SLS and SLES reduces the surface tension of water. They can also be used as dispersants to properly mix spices and body spray. SLS and SLES can also be used in a variety of personal care products such as soap, shampoo, shower gel, toothpaste and other foaming products. SLS and SLES are also added to moisturizing lotions and sunscreens because of these properties. The difference between SLS and SLES is in the manufacturing process. SLS undergo a process called ethoxylation. And then you get SLES. Why do we have this ethoxylation process? Because SLS has some mild irritation on the skin, such as dry. The manufactured SLES are more gentle and do not irritate the skin. Many manufacturers do not use SLS because it is irritating. SLES should be softer o...