Skip to main content

What is Expandable Microsphere?

 Brief Introduction of Expandable Microsphere

The color of the expandable microspheres is white. Its average particle size is 10-30 μm. Its average density is about 1100 kg / m 3 . It has a thermoplastic shell comprising a low boiling liquid hydrocarbon. When the thermoplastic shell is softened at elevated temperatures, the increased pressure of the hydrocarbon will cause the microspheres to expand 40 to 100 times. When the internal pressure of the microsphere, the shell tension and the external pressure reach equilibrium, the microspheres no longer expand. Expandable microspheres have become the world's lightest application because the density of expanded microspheres is less than 30 kg / m3 (0.03 g / cm3).

 

Characteristics of Expandable Microsphere

The first feature is cost savings.

In thermoplastic materials such as PR, PP, PVC, PET, TPR, TPU, TPV, PA and paper/paperboard, expandable microspheres can be used as lightweight fillers and blowing agents. Expandable microspheres reduce product density, reduce volume, and reduce transportation costs. 30kg PVC or 25-30kg paper fiber can be replaced with 1kg expandable microspheres. Expandable microspheres can be used in many fields, including soles, wood-plastic composites, automotive parts, paper and cardboard, nonwovens, coatings, and the like.

 

The second feature is low density.

The heat density of the expandable microspheres is reduced. Add 3 Å of expanded microspheres to the material to reduce the material density by 10%. Or adding 1% unexpanded microspheres reduces the density by 10%. Product density is reduced but its volume and thickness do not increase. It helps to reduce the energy consumption of the car. It makes the sole lighter and more comfortable. It is widely used in the following products: soles, wood-plastic composites, auto parts, non-woven fabrics, ultra-light clay, etc.

 

The third feature is surface modification.

Microspheres of different particle sizes have different surface effects. The small particle size of 5 μm makes the surface smooth. Large particle size microspheres can produce relatively rough surfaces. 3D and a special cashmere surface make the surface smooth, soft and non-slip. It is widely used in the following materials: printing inks, leather coatings, paper and cardboard.

 

The fourth feature is insulation.

The microspheres have good insulation, sound insulation, electrical insulation and low water permeability because of their uniform closed cell structure. Because of this property, it can be used in the following products: wine stoppers, auto parts, crack fillers, silicon. Rubber, emulsion explosives, cables, etc.

 

The fifth feature is flexibility.

The expandable microspheres are elastic. It is a thermoplastic core-shell microsphere. It can be compressed under a certain pressure, or it can be restored to its original state. It can therefore be used in the following products: wine corks, automotive interiors, silicone rubber, leather coatings, cables and more.

 

 

Want to know more details of DMC Catalyst, please visit our website.

 


Comments

Popular posts from this blog

Difference Between Sodium Laureth Sulfate And Sodium Lauryl Sulfate

Sodium laureth ether sulfate  (SLS) and sodium lauryl ether sulfate (SLES) are surfactants that play a role in foaming products. It is widely believed that the foam produced by a product is its performance. The composition of SLS and SLES reduces the surface tension of water. They can also be used as dispersants to properly mix spices and body spray. SLS and SLES can also be used in a variety of personal care products such as soap, shampoo, shower gel, toothpaste and other foaming products. SLS and SLES are also added to moisturizing lotions and sunscreens because of these properties. The difference between SLS and SLES is in the manufacturing process. SLS undergo a process called ethoxylation. And then you get SLES. Why do we have this ethoxylation process? Because SLS has some mild irritation on the skin, such as dry. The manufactured SLES are more gentle and do not irritate the skin. Many manufacturers do not use SLS because it is irritating. SLES should be softer o...

Butyl Iodide

Features of Butyl Iodide Product Name: Butyl iodide Chemical Formula: C4H9I CAS No .: 542-69-8 Dangerous Grade: 3 Technical Data of Butyl Iodide ITEMS SPECIFICATIONS RESULTS Appearance Colorless transparent liquid Conforms Assay ≥99% 99.16% Specific Gravity 1.60-1.64 (20 ° C) 1.61 Distillation Range 129-132 ° C 130 ° C Conclusion Complies Remarks No free Iodine Package and Storage: 100kg/drum or 200kg/drum Store in a cool, dry place. Keep container closed when not in use Application /Application Industries: Solvent Organic synthesis Butyl iodide  (1-iodobutane) is an organic compound which is an iodo derivative of butane. It is used as an alkylating agent. n-Butyl Iodide is used in wide range of medicals industrial applications as well as in human and animal nutrition products such as antiseptics and disinfectants, pharmaceutical intermediates, polarizing films for liquid crystal display [LCD] ch...

Two Different Types of Anionic Surfactants

  Anionic surfactant is a kind of product with the longest history, the largest output and the most varieties among surfactants. According to the structure of hydrophilic groups, anionic surfactants can be divided into sulfonates and sulfates, which are the main categories of anionic surfactants.    The  anionic surfactants definition  is a must-known concept for many people working in the chemical industry. The various functions of surfactants are mainly manifested in changing the properties of the liquid surface, liquid-liquid interface and liquid-solid interface, of which the surface (interface) of the liquid is the most important.   Sulfate-type anionic surfactants mainly include fatty alcohol sulfate (also known as primary alkyl sulfate) and secondary alkyl sulfate : 1.  Fatty alcohol sulfate (ester) salt (FAS or AS). The general formula of fatty alcohol sulfate is: ROS0-3M+, R is alkyl, M+ is sodium, potassium, ammonium, ethanolamine and other ca...